dit
..

Static analysis of WCET
IN an experimental satellite
software subsystem.

Jorge Garrido
Juan Zamorano
Juan A. de |la Puente

Universidad Politécnica de Madrid, Spain o
:

Aims

* To experiment with using static analysis WCET tools
* Study influence of LEON processors singularities

* Test system: UPMSat2 micro-satellite on-board
computer

» simple, but yet realistic system

» software developed using an MDE approach
- functional code auto-generated from Simulink
- concurrency and real-time behaviour provided by containers

» WCET analysis required for schedulability analysis
- required by ESA standards

WCET 2013 © DIT/UPM 2012

UPMSat2 on-board computer architecture

magnetorquers

MT

attitude
determination
and control

e

N

MM

magnetometers

WCET 2013

ADCS

on-board
computer

- voltage
SEensors - intensity
-temperature
telemetry &
telecommand radio
management equipment
- N 4)
platiorm e 51 ym1c |k——>{ | T™MC
monitoring
\ J o J
\'4 e N
payload
< manager
OoBC
- /

© DIT/UPM 2012

ADCS - Attitude Determination and Control
System

* Orientation with respect to Earth

* Designed by aerospace engineers with Simulink

* C code autogenerated
» Linear
» Vector arithmetics
» Embedded into Ada cyclic task

WCET 2013 © DIT/UPM 2012

SPARC register windows

* Sets of 32 general purpose registers

* Part of each set overlaps with the next one, allowing to
pass parameters using registers

* Implemented as a circular buffer
* Size is implementation dependant
* When it gets full, next function call causes an overflow

* Similarly, when it gets empty, next return causes an
underflow

* Overflows and underflows trigger handler routines

* Handler routines pose WCET overhead
* Behavior is implementation dependant

WCET 2013 © DIT/UPM 2012

SPARC register window

CWP
(current window) J/

WCET 2013

w7 locals

w7 outs

wb locals

wb6 outs

w3 outs w4 ins w35 locals

\
/ \

;. wd outs | w4 locals ",

w3 locals w5 outs

WCET static analyzers

* Allow early analysis of binary executables
* Can perform stack analysis

* Disadvantages:
» Processor-specific
» Need to be configured
» Depend on assertions
» Incomplete due to processors complexity

WCET 2013 © DIT/UPM 2012

Analyzers used

e Static analyzers
> a3
» Bound-T

* Dynamic analyzers
» Rapitime

WCET 2013

© DIT/UPM 2012

* Developed by Absint

* SPARC register windows
» Assumes an unlimited number of register windows

» Stack analysis can obtain the max. depth of the reqister
window stack

» Register window overflow and underflow overhead has to be
calculated by the user.

WCET 2013 © DIT/UPM 2012

Bound-T

* Developed by Tidorum Ltd

* ERC32 support

* Terminal interface

* Graphical representation of results by 3rd party tools
* Rapitime integration

* SPARC register windows
» Specific number of register windows support
» Initial number of used register windows

» Register window overflow and underflow prediction

v Automatic register window overflow and underflow trap handler detection
and analysis

WCET 2013 © DIT/UPM 2012

10

Study strategy

* Compute a base WCET with a3

* Measure a WCET for overflow and underflow trap
routines by dynamic analysis
» 156 cycles per overflow
» 188 cycles per underflow

* Study the worst-case number of trap occurrences
» Relevant information from Bound-T
» Implementation dependent
» Windows saved/restored in trap routine
» Windows restored after context switch

* Compute the register window WCOH =>WCET

WCET 2013 © DIT/UPM 2012

11

Register windows overhead

* Number of traps in a function

Nf:anTf

* Number of traps in the worst-case path

N:ZNf

fEF

* Worst-case overhead

WCET 2013 © DIT/UPM 2012

12

Call tree

control_step

WCET 2013

Computed Worst-Case Execution Time: 72336 cycles = 1.809 ms

_fpadd_parts

__muldf3.L2 (loop)

— \ ___muldf3.L1 (loop)

__unpack d

- __divdf3.L1 (loop)

__fpcmp_parts d

© DIT/UPM 2012

‘ _fpadd_parts.L1 (loop) i—b‘ _fpadd_parts.L2 (loop) \

‘ __ashldi3 \
‘ __unpack_d.L1 (loop) \

13

Case studies

* One window saved/restored on traps, only current window
restored on context switches

* One window saved/restored on traps, full windows set
restored on context switches

* Full set saved/restored on traps, full set restored on
context switches

WCET 2013 © DIT/UPM 2012

14

Case study |

* One window saved/restored on traps, only current
window restored on context switches

» a®reports 72366 cycles as WCET;

» Bound-T reports 25 overflows and 25 underflows
WCOH = 25 x 156 + 25 x 188 = 8600 cycles

WCET = WCETg + WCOH = 80966 cycles (+11.56%)

WCET 2013 © DIT/UPM 2012

15

Case study |

* One window saved/restored on traps, full windows
set restored on context switches

» a’ reports 72366 cycles as WCETg

» Number of overflows in worst-case is equal to max. depth of
register windows that code may create.

» Underflows only occur if depth is higher than processor
number of register windows.

WCOH =3 x 156 + 0 x 188 = 468 cycles

WCET = WCET, + WCOH = 72834 cycles (+0.63%)

WCET 2013 © DIT/UPM 2012

16

Case study Il

* Full set saved/restored on traps, full set restored on
context switches

» a®reports 72366 cycles as WCET;

» In case study, worst case happens when the controller is
called using the last available window, so calls to floating point
routines cause a trap

WCOH =24 x 156 + 24 x 188 = 8256 cycles

WCET = WCETg + WCOH = 80622 cycles (+11.28%)

WCET 2013 © DIT/UPM 2012 17

Comparison with dynamic analysis

* Improving former dynamic WCET analysis

» Same code was previously analyzed using a hardware-in-the-

loop approach.

» Rapitime reported 8400 cycles as WCET,

» Refined results for Rapitime’s WCET:

1 W. no restore

17000 cycles (+102.38%)

1 w. full restore

8868 cycles (+5.57%)

7 w. full restore

WCET 2013

16656 cycles (+98.28%)

© DIT/UPM 2012

Analysis of results

* Implementation decisions have a strong influence on
the overhead

* For dynamic analysis, register windows overhead
can double measured WCET

* Even for more pessimistic WCET, the register
windows overhead is far from trivial

WCET 2013 © DIT/UPM 2012 19

Conclusions

* UPMSat2 good testbed for experimenting with
high-integrity real-time technology

* Static analyzers good first-step WCET analysis,
although more pessimistic

* Register window analysis has to be included in
WCET measurements for LEON processors

* Static analyzers provide useful information

WCET 2013 © DIT/UPM 2012

20

dit
o

Analysis of WCET
IN an experimental satellite
software development

Jorge Garrido
Juan Zamorano
Juan A. de la Puente

Universidad Politécnica de Madrid, Spain

POLITECNICA

